

Benedict Chan

+65 8468 7191 | benedictchan247@gmail.com | linkedin.com/in/benedictchannn | github.com/BenedictChannn
Singapore citizen — **H-1B1-eligible (U.S.)**; open to relocation

EDUCATION

National University of Singapore <i>Master of Science in Robotics</i>	Aug 2025 – Present
National University of Singapore <i>Bachelor of Engineering in Computer Engineering, Minor in Innovation & Design Program</i>	Aug 2022 – May 2025

• Accolades: NUS Engineering Scholars Program (accelerated B.Eng + M.Sc), DSTA TechUP (Pioneer cohort)

• Relevant Coursework: Image Processing and Analysis, Robot Perception, Data Structures and Algorithms, Signals and Systems, Software Engineering and OOP, Real-Time Operating Systems, Discrete Structures

TECHNICAL SKILLS

Programming: Python, TypeScript, C/C++
ML & Vision: PyTorch, OpenCV; CLIP/ViT; YOLO; LVLMs; scikit-learn, XGBoost; Hydra
Agents: LangGraph; tool/JSON-schema calling; routing & consensus; embeddings & vector search (Weaviate/HNSW)
Simulation & Robotics: Blender/SMPL-X, UE4, CARLA; LiDAR point-clouds; SLAM/ESVO (C++); FFmpeg
Systems & Cloud: Linux, Docker, Git/GitHub Actions; REST APIs; GCP Tools – Firebase/Firestore, GCS, Vertex AI

WORK EXPERIENCES

Founding Software Engineer <i>GrowtricsAI (AI EdTech Startup)</i>	May 2025 – Dec 2025 <i>Singapore</i>
• Architected a document-parsing pipeline to replace manual labeling, converting unstructured exam papers into structured Q&A data, which achieved 83% conversion rate , accurately populating 10k+ questions .	
• Developed a video generation pipeline using LangGraph + Flutter that transforms students' graded performance into personalised, step-by-step explainer videos to address student's misconceptions.	
• Defined SLOs and cost projections for GenAI workloads; owned entire document-parsing features roadmap to raise extraction quality and extend coverage across subjects, curricula, languages, and modalities.	

Generative AI Researcher Intern <i>SIT × NVIDIA AI Center</i>	Dec 2024 – Sep 2025 <i>Singapore</i>
• MANUSCRIPT IN PREPARATION: <i>Unified Framework for Evaluating Vision Models for Action Recognition in Surveillance Context</i> .	
• Engineered a scalable synthetic-data engine using open-source datasets (SMPL-X, AMASS, and BABEL) and implemented an auto-labeling mechanism (pose/bbox/mask), which accelerates CV/VLM data collection.	
• Developed a DORI-aligned surveillance dataset (200k+ images & 630k+ QA pairs) with controlled context parameters to enable robust benchmarking of presence & action recognition models.	
• Built a unified evaluation framework for human-presence & action recognition, with Hydra configs and Docker/CUDA to benchmark YOLO models against compact LVLMs .	

Algorithm Engineer Intern <i>Outsight (3D Spatial Intelligence Startup)</i>	Feb 2024 – Jul 2024 <i>Paris</i>
• Improved perception validation accuracy by 67% in large-scale environments through high-fidelity People Flow Monitoring simulations with realistic crowd dynamics and stochastic destination assignments (UE4/CARLA).	
• Supported pre-deployment validation of over 300 LiDARs across multiple terminals at a major SEA airport.	
• Cut simulation setup time by over 90% via an end-to-end scenario tooling suite for scenario configuration, point-cloud dataset generation, and fixed-seed regression checks, accelerating iteration velocity for algorithm team.	

Computer Vision Engineer Intern <i>DSO National Laboratories</i>	May 2023 – Aug 2023 <i>Singapore</i>
• Increased drone navigation accuracy by 20% in low-light, high-speed conditions by developing an Event-based Stereo Visual Odometry (ESVO) system using C++	
• Achieved 5x latency reduction in state estimation (80%↓) by re-implementing non-linear solvers with SymForce symbolic computations , enabling real-time control feedback in drone navigation systems.	